
lable at ScienceDirect

Journal of Structural Geology 31 (2009) 842–852
Contents lists avai
Journal of Structural Geology

journal homepage: www.elsevier .com/locate/ jsg
An approach to folding kinematics from the analysis of folded oblique surfacesq

N.C. Bobillo-Ares a, F. Bastida b, J. Aller b,*, R.J. Lisle c
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a b s t r a c t

Two-dimensional analysis of folded surfaces oblique to the mechanical layering can shed light on the
kinematic mechanisms that operated during the development of folds. A new version of the program
‘FoldModeler’, developed in the MATHEMATICA� environment, is used to obtain the deformed configuration
of an initial pattern of oblique surfaces deformed by any combination of the most common kinematic
folding mechanisms: flexural flow, tangential longitudinal strain, with or without area change and
heterogeneous simple shear. The layer can also undergo any form of homogeneous strain at any moment
of the folding process. The outputs of the program provide complete information about the strain
distribution in the folded layer that includes graphs of the angle between the oblique surfaces as
a function of the inclination of the layering through the fold. These graphs can be very useful to
discriminate between the mechanisms that operate in the development of natural folds, and they have
been obtained and discussed for the most common combinations of strain patterns. The program is
applied to obtain theoretical folds that give a good fit of some natural examples of folded oblique
surfaces.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Folds are structures consisting of a curvature of a set of
geological surfaces. In some instances we observe two sets of
mutually oblique surfaces affected by folding. Examples of this are
found in folded angular unconformities, in folded strata showing
cross bedding and in cases where bedding is obliquely cut by sets of
cleavage surfaces formed in an earlier folding event. Commonly, the
angle between the two sets (obliquity angle) was approximately
constant before folding over a distance greater than fold size, but
geological experience shows that after folding this angle changes
by varying amounts due to the heterogeneous strain associated
with folding. The measurements of the obliquity angle in a fold can
be plotted graphically as a function of the bedding inclination. The
form of this function obviously depends on the folding strain
pattern, i.e., on the kinematic folding mechanism.

The analysis of folding of oblique surfaces in rocks serves two
main purposes: a) to contribute to the knowledge of strain patterns
in folded layers; and b) to decipher the orientation of the oblique
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surfaces in the configuration prior to folding. The former aim can be
achieved in cylindrical folds by analysis of the two-dimensional
strain on the profile of the folded layers; however, the achievement
of the latter aim requires a three-dimensional analysis of the strain,
so that the obliquity angles must be considered as dihedral angles.

The study of folded oblique surfaces has received little attention,
and only a few papers have considered this subject (Ramsay, 1961,
1963, 1967, pp. 491–417; Whitten, 1966, pp. 522–532; Coward,
1973; Williams, 1979; Ramsay and Huber, 1987, pp. 476–477 and
484–489; Ramsay and Lisle, 2000, pp. 968–972). Ramsay (1961,
1967) obtained curves of the obliquity angle versus inclination for
folds formed by several mechanisms (flexural slip – or flexural flow,
flattening and heterogeneous simple shear through the layers).
Ramsay and Lisle (2000) made a computer program (DIHEDAN-
GLE.BAS) that gives the modification of the dihedral angle between
two planar features as a result of a heterogeneous strain field. With
this program the above authors modelled the variation of the
dihedral angle as a result of folding by heterogeneous simple shear
or heterogeneous simple shear plus flattening.

The present paper is concerned with the application of the
analysis of oblique surfaces to the study of folding kinematics. We
develop a generalised two-dimensional method to obtain theo-
retical curves that show the variation of the obliquity angle against
bedding inclination for a general folding process in which several
buckling mechanisms and other types of strain can be involved. The
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Fig. 1. Sign convention for the obliquity angle d and the inclination a.
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theoretical analysis is incorporated in a new version of the program
‘FoldModeler’ (Bobillo-Ares et al., 2004), which allows the model-
ling of folds by any simultaneous or successive superposition of
flexural flow, tangential longitudinal strain with or without area
change, heterogeneous simple shear parallel to the axial trace and
any type of homogeneous strain. The program allows the pattern of
obliquity angle variation to be determined for folds with different
layer geometries (from similar to class 1A; Ramsay, 1967, pp 365–
367), surface geometries (from chevron to circular), attitudes (from
upright to recumbent) and asymmetries. ‘FoldModeler’ also calcu-
lates a parameter (k) that gives a measure of the quality of the fit
between the theoretical curves obtained by the program and the
natural data. The parameter k is the root mean square error (RMSE)
obtained from the vertical distances between the points corre-
sponding to measurements on the natural fold and the theoretical
curve (the coefficient increases with the misfit). Natural points out
of the interval of definition of the theoretical curve are not
considered in the calculation of k.

After the development of the theoretical basis, patterns of
obliquity angle variation versus inclination are characterised for
several kinematic folding mechanisms (forward problem). Finally,
a few natural examples of folded oblique surfaces are analysed. By
comparison of these with theoretically modelled folds conclusions
about their folding kinematics are drawn (inverse problem).

2. Modelling folded oblique surfaces

To model folding by different kinematic mechanisms the
program ‘FoldModeler’, developed in the MATHEMATICA� environ-
ment, starts from the initial configuration of a layer profile formed
by a grid of squares or rectangles. The nodes of the grid are then
displaced according to the transformation relations of the mecha-
nisms involved in folding, and the layer shape and strain state are
obtained. In the modelling, it is necessary to initially define the
‘‘guideline’’, a longitudinal reference line located inside the layer
that enables the monitoring of folding. In our models, this line has
been initially placed in the middle of the layer. The shape of the
guideline is defined by a single mathematical function for the two
limbs, and the functions used in this paper are conic sections (Aller
et al., 2004). The part of a conic section used to represent the fold
guideline is defined by its eccentricity e (0� e< 1, ellipse; e¼ 1,
parabola; e> 1, hyperbola), and the aspect ratio h of the fold for
symmetrical folds (h is the ratio between the height yf and the
width xf of a fold limb). In asymmetric folds, the aspect ratio
considered is defined for the right limb. The left limb aspect ratio is
automatically obtained by the program from the conic eccentricity
and the length of the limb. Modelling of folds is achieved by
successive or simultaneous superposition of folding steps. Each
folding step is defined by the mechanism applied, the increment
that it produces in terms of the aspect ratio h of the right limb, and
the change that it produces in the eccentricity of the guideline, or
by the deformation gradient matrix in the case of a homogeneous
strain step. Simultaneous superposition of several mechanisms can
be modelled by applying many times in a single run of the program
a sequence of folding steps of the involved mechanisms with very
small increments in the aspect ratio and shape of the guideline or in
the matrix elements that define the homogeneous strain.

To model folding of oblique surfaces, a set of traces with specific
inclination is drawn on the initial grid. Each trace is divided into
several segments by the intersection points with the lines of the
grid, and the position of these points in the initial configuration is
calculated by ‘FoldModeler’. Once the deformed configuration of
the initial squares is obtained applying the transformation relations
of the involved mechanisms, the images of the intersection points
on the sides of each deformed quadrilateral are determined by
maintaining the proportionality relationships of the segments
defined by these points on the corresponding side. Joining the
images of the different segments of a trace, we obtain the image of
the oblique trace. Since the strain is heterogeneous, the accuracy of
this method obviously increases as the size of the squares of the
grid decreases. Finally, the obliquity angle d is determined and its
variation as a function of the layer inclination a is graphically
represented. The way to measure these angles and the sign
convention for them is shown in Fig. 1.

3. Folding of oblique surfaces by different folding
kinematic mechanisms

To facilitate the analysis of folding of oblique surfaces, curves of
the variation with inclination (a) of the obliquity angle (d) have
been generated with ‘FoldModeler’ for different kinematic mech-
anisms or superposition of them. In general, for a specific mecha-
nism, the geometry of the curves depends on the geometry of the
folded surfaces, the initial ratio between the thickness and length of
the layer, the initial dip (d0) of the oblique surfaces, assumed
constant, and the aspect ratio (h) of the fold. If the oblique surfaces
have been generated by the superposition of several mechanisms,
the geometry of the curve also depends on the relative amount of
each mechanism. There are countless possibilities to model folded
oblique surfaces, and in the following text we only show d–a curves
representative of the main kinematic folding mechanisms. These
curves allow the main properties of the folding of oblique surfaces
for these mechanisms to be inferred (forward problem) and can be
also used for obtaining a first indication of the mechanisms that
have operated in the development of a specific natural fold with
oblique surfaces, whose d–a curve has been obtained from
measurements in the field or photographs (reverse problem). A
refinement of the analysis must be made using ‘FoldModeler’, as it
will be described below. The theoretically modelled folds consist of
a half wavelength and the thickness/length ratio of the initial layer
has been set as 1/30. With exception of the folds formed by pure
flexural flow, the geometry of the folded surfaces is parabolic.
Likewise, with exception of the folds formed by pure flexural flow
and by heterogeneous simple shear, the initial obliquity angle (d0)
has been set to 30�. One characteristic is that oblique surfaces with
opposite signs of the initial obliquity angle (d0 and �d0) have
different curves, although closely related. So if a point (a, d) belongs
to a curve with initial dip d0, the point (�a, 180� d) belongs to the
curve with initial dip �d0 and vice versa. The dominant curvatures
of the two curves generally have opposite sign.

3.1. Flexural flow

In this mechanism the strain at a point on the folding layer
depends essentially on the inclination at this point with respect to
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a fixed point without strain (pin point) that is taken as the point
whose inclination is zero. This point is generally chosen to be at the
hinge point of the folded layer. The strain is independent of the
curvature, thickness/length ratio of the layer and fold aspect ratio.
Consequently, the d–a curves are the same for the bottom and the top
of the folded layer. A complete analysis of the variation of the dihedral
angle between two surfaces for folding by this mechanism was made
by Ramsay (1967, pp. 492–498 and Fig. 9–18). Here we present an
alternative approach to this problem using ‘FoldModeler’. A layer
with a set of oblique surfaces folded by this mechanism is shown in
Fig. 2a. In this case the guideline is a semi-ellipse that provides an
inclination range from �90� to 90� in the construction of the d–
a curves. A complete set of curves of oblique surfaces for intervals of
10� of initial obliquity angle (d0) folded by flexural flow are shown in
Fig. 3. From this figure we can draw the following conclusions:

- The curves describe decreasing functions.
- Since there is no strain in the hinge point, the initial obliquity

angle d0 is not modified in this point and the ordinate at the
origin of each curve allows the d0 value to be inferred.
3.2. Tangential longitudinal strain

Tangential longitudinal strain involves the existence of a neutral
surface whose points have no finite strain (neutral points). A layer
with a set of oblique surfaces folded by this mechanism is shown in
Fig. 2b. Two types of tangential longitudinal strain have been
distinguished: parallel and equiareal tangential longitudinal strain
(Bobillo-Ares et al., 2006). The former involves area change and
Fig. 2. Folded layers with oblique surfaces obtained with ‘FoldModeler’ for folding by differ
strain (ETLS). (c) Flexural flow (FF) plus flattening (FLAT) (RF is the ratio between major and
the function that describes the displacements of the heterogeneous simple shear is the same
angle is of 30� .
constant orthogonal thickness (parallel fold); the latter involves no
area change through the fold and produces a thickening of the inner
arc part and a thinning of the outer arc part (Ramsay, 1967, pp. 397–
403; Bobillo-Ares et al., 2000).

Several pairs of curves, one for the outer arc and other for the
inner arc, corresponding to layers folded by parallel tangential
longitudinal strain with different aspect ratios h are shown in
Fig. 4a. These curves show the following features:

- The d–a curves are symmetric with respect to the Y-axis.
- The obliquity angle d increases with respect to d0 in the inner

arc of the folded layer and decreases in the outer arc. All curves
have a turning point at the hinge point; this is a maximum in
the inner arc and a minimum on the outer arc.

- The maximum value of the inner arc curves increases as the
aspect ratio increases and the outer arc minimum value
decreases as this ratio increases.

- Along the neutral line the initial obliquity angle d0 does not
change with folding. Similarly, this angle barely changes in
parts of the layer with high inclinations, where the curvature of
the layer is very low. In these zones, the corresponding d value
gives approximately the initial value d0.

Folds modelled by tangential longitudinal strain with the same
aspect ratio show that the extreme values of d in the curves deviate
from the initial d0 value as the layer thickness/length ratio
increases; that is, an increase in this ratio has a similar effect that an
increase of the aspect ratio.

Representative d–a curves for folding by equiareal tangential
longitudinal strain (Fig. 4b) exhibit similar properties to the
ent kinematic mechanisms. (a) Flexural flow (FF). (b) Equiareal tangential longitudinal
minor axes of the strain ellipse due to the flattening). (d) Heterogeneous simple shear;
that defines the shape of the guideline (parabola, e¼ 1). In all cases the initial obliquity



Fig. 3. d–a curves for folding by flexural flow with several initial obliquity angles (numbers on the curves).
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curves of folding by parallel tangential longitudinal strain. The
only characteristic difference is that the curves of the inner arc in
the equiareal mechanism can be asymmetric, so that the
maximum point appears for a s 0. This asymmetry is more
apparent as the fold aspect ratio or the thickness/length of the
layer increases, and it is due to the high curvature gradient in the
hinge zone that produces an appreciable deviation of the long
axes of the strain ellipse from the normal to the layer boundary
(Bobillo-Ares et al., 2000).

3.3. Flexural flow or tangential longitudinal strain plus flattening

Flattening of parallel folds has been a mechanism commonly
considered to explain the development of class 1C folds or
Fig. 4. d–a curves for folding by parallel (a) and equiareal (b) tangential longitudinal strain w
and length of the layer of 1/30 and parabolic neutral line (NL). Curves above the neutral lin
outer arc (OA). The initial obliquity angle is of 30� .
subsimilar folds (Ramsay, 1962, 1967; Mukhopadhyay, 1965;
Hudleston, 1973). In this section, flattening of folds previously
formed by buckling mechanisms (flexural flow or tangential
longitudinal strain) will be considered.

Oblique surfaces folded by flexural flow plus flattening were
analysed by Ramsay (1967, pp. 498–500, Fig. 9–19), who showed
several representative d–a curves. A layer with a set of oblique
surfaces folded by this combination of mechanisms flexural flow
plus flattening is shown in Fig. 2c, and a set of d–a curves is shown
in Fig. 5a. The aspect ratio of the fold by flexural flow is h¼ 1, and
the amount of flattening is given on the curves by the value of
RF ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
l1=l2

p
, where l1 and l2 are the principal quadratic elonga-

tions due to the flattening. The curves show that as the flattening
amount increases a more definite turning point more appears. This
ith different aspect ratio (numbers on the curves), an initial ratio between the thickness
e correspond to the inner arc (IA) and curves below the neutral line correspond to the



Fig. 5. d–a curves for folding by flexural flow (FF) plus flattening (FLAT) (a) and by parallel tangential longitudinal strain (PTLS) plus flattening (FLAT) of a layer with an initial ratio
between the thickness and length of the layer of 1/30 and parabolic neutral line. (b). Numbers on the curves represent the ratio (RF) between the major and the minor axes of the
strain ellipse due to flattening. In (b), IA¼ inner arc, and OA¼ outer arc. The initial obliquity angle is of 30� .
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point is located on a limb and migrates with flattening towards
points with greater absolute values of inclination.

The curves representative of parallel tangential longitudinal
strain, with h¼ 1, plus flattening (Fig. 5b) show that the turning
points are displaced progressively towards a limb as the flattening
amount increases and the minimum of the outer arc, typical of the
tangential longitudinal strain, becomes a maximum. With high
flattening the curves can be difficult to distinguish from the curves
corresponding to flexural flow plus flattening. The main differences
between the two cases are the following (Fig. 5):

- For low amounts of flattening, the maximum is better defined
for parallel tangential longitudinal strain plus flattening.

- For high values of flattening the curve is the same for the
bottom and the top of the layer in flexural flow plus flattening,
but this does not occur for parallel tangential longitudinal
strain, with h¼ 1, plus flattening. However, in cases in which
the d0 value is different for the top and the bottom of the layer,
or this angle is only measurable in a boundary of the layer, this
difference is not applicable to natural folds.

- The decreasing part of the curves located on the left of the
maximum point in Fig. 5 is more developed in the folds formed
by parallel tangential longitudinal strain plus flattening than in
the folds formed by flexural flow plus flattening.

The d–a curves for folding by equiareal tangential longitudinal
strain plus flattening can be very difficult to distinguish from those
of folding by parallel tangential longitudinal strain plus flattening.
Nevertheless, when the initial thickness/length ratio of the layer is
high and the equiareal tangential longitudinal strain produces
a bulge in the inner arc with a multiple hinge, the flattening
amplifies the bulge and the d–a curve has a characteristic anomaly
and is a multiform function in the interval with low inclinations
(several d values for each single a value). These are diagnostic
features of equiareal tangential longitudinal strain.
3.4. Flexural flow or tangential longitudinal strain plus
homogeneous simple shear perpendicular to the axial trace

Superposition of homogeneous or near homogeneous simple
shear over previous folds has been proposed by several authors to
explain the development of overturned or recumbent folds (e.g.,
Hudleston, 1977; Ramsay et al., 1983; Fernández et al., 2007). Two
sets of d–a curves for folding by flexural flow plus simple shear are
shown in Fig. 6 for a d0¼ 30�. Fig. 6a corresponds to negative simple
shear (anticlockwise rotation). In this case, the curves are comparable
to those of flexural flow plus flattening or tangential longitudinal
strain plus flattening. Fig. 6b corresponds to positive simple shear. In
this case the d–a curves are mainly decreasing, and a maximum point
only appears for high values of the shear strain (g¼ 3). This is
different to the cases with negative simple shear or flattening.

d–a curves for folding by parallel tangential longitudinal strain
plus simple shear are shown in Fig. 7. In these cases, the differences
due to the sign of the simple shear are less than in the cases of
flexural flow plus simple shear, because a well defined maximum
appears in all cases. However, the position of this maximum point
allows the sign of the simple shear to be discriminated in the cases
with low values of the shear strain. In the cases with high values of
the shear strain the discrimination by the form of the curves is very
difficult; nevertheless the sense of the fold asymmetry allows the
differentiation to be easily made in any case. A similar problem is
posed to distinguish the flexural flow plus flattening from the
parallel tangential longitudinal strain (or equiareal tangential
longitudinal strain) (compare Fig. 7 with Fig. 6a).
3.5. Heterogeneous simple shear

Whether shear folds – similar folds formed by heterogeneous
simple shear parallel to the axial plane – truly exist in nature has
been a controversial matter (e.g, González-Bonorino, 1960; Ram-
berg, 1963; Ramsay, 1967, pp. 421–423; Ragan, 1968, p. 46;
Hudleston, 1977), because it involves some conditions that are
difficult to justify in natural folds. Among others, it produces strain
patterns that do not agree with those usually deduced from the
cleavage distribution in similar or subsimilar folds. In addition,
when the shear direction is perpendicular to the initial layer, it does
not produce shortening in a direction perpendicular to the axial
plane. Nevertheless, this mechanism is geometrically possible and
a heterogeneous simple shear component could operate in
combination with other kinematic mechanisms. In fact, surfaces
folded by this mechanism have been analysed by several authors,
and the corresponding d–a curves were shown by Ramsay (1967,



Fig. 6. d–a curves for folding by flexural flow (FF) and homogeneous simple shear (SS) perpendicular to the axial trace. (a) The rotation sense is anticlockwise (SS< 0). (b) The
rotation sense is clockwise (SS> 0). Numbers on the curves represent the shear strain (g). The initial obliquity angle is of 30� .
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Fig. 9–30), Williams (1979, Fig. 5c) and Ramsay and Lisle (2000,
Fig. 36–71). Hence, this mechanism has been included in the
program ‘FoldModeler’ and considered in the analysis of oblique
surfaces. In any case, the comparison of the theoretical results
produced for this mechanism with the characteristics of natural
folds can provide good arguments to know if heterogeneous simple
shear is a mechanism that operates in natural folds.

A layer with a set of oblique surfaces folded by heterogeneous
simple shear is shown in Fig. 2d. As with the mechanism of flexural
flow, in heterogeneous simple shear the obliquity angle d is inde-
pendent of the curvature, thickness/length ratio of the layer and
fold aspect ratio. Fig. 8a shows a set of d–a curves of folds modelled
by heterogeneous simple shear with different values of the initial
obliquity angle d0. Except the curve with d0¼ 90�, which corre-
sponds to the straight line d¼ 90� a, the curves have a turning
point (maximum when d0< 90� and minimum when d0> 90�),
Fig. 7. d–a curves for folding by parallel tangential longitudinal strain (PTLS) and homogen
between the thickness and length of the layer of 1/30 and parabolic neutral line. (a) The se
(SS< 0). (b) The sense of the displacements is opposite to the dip direction of the oblique sur
angle is of 30� .
whose corresponding inclination value depends on the d0 value.
These curves are difficult to distinguish from those obtained for
flexural flow or tangential longitudinal strain plus flattening. A
peculiar characteristic of these curves is that they pass through the
points (�90, 0) and (90, 0). This can be a distinctive feature, but only
when high inclinations appear in the fold. As in flexural flow, when
the initial obliquity angle d0 has the same value for the top and the
bottom of the layer, the curve is the same for the two layer
boundaries; this feature can help to distinguish heterogeneous
simple shear from other mechanisms.

3.6. Heterogeneous simple shear parallel to the axial
plane plus flattening

This mechanism has been proposed by several authors (Ramsay,
1967, pp. 421–436; Hudleston, 1977; Ramsay and Lisle, 2000, p. 824
eous simple shear (SS) perpendicular to the axial trace of a layer with an initial ratio
nse of the displacements is the same of the initial dip direction of the oblique surfaces
faces (SS> 0). Numbers on the curves represent the shear strain (g). The initial obliquity



Fig. 8. (a) d–a curves for folding by heterogeneous simple shear (HSS) with several initial obliquity angles (numbers on the curves). (b) d–a curves for folding by heterogeneous
simple shear (HSS) plus flattening (FLAT); numbers on the curves represent the ratio (RF) between the major and the minor axes of the strain ellipse due to flattening; the initial
obliquity angle is of 30� .
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and 826–831) to explain the development of similar folds. These
authors obtained d–a curves for oblique surfaces folded by this
superposition of strain patterns (Ramsay, 1967, Fig. 9–31; and
Ramsay and Lisle, 2000, Fig. 36.71). The inclusion of flattening
eliminates some of the problems of the heterogeneous simple shear
mechanism, since flattening gives rise to shortening perpendicular
to the axial plane and produces strain patterns compatible with the
cleavage distribution observed in natural folds. An interesting
aspect is that, in this type of superposition, the application order of
the mechanisms does not influence the form of the d–a curve
although it influences the geometry of the final fold, i.e., the
superposition is commutative for the curves but not for the folds
(Appendix A). As a consequence of this, the curves corresponding to
this combination of mechanisms (Fig. 8b) are indistinguishable
from those obtained in a single episode of heterogeneous simple
shear, since the d–a curve of a fold formed by a component of
flattening and another of heterogeneous simple shear can be also
obtained by heterogeneous simple shear on a layer with a different
initial dip d0 that incorporates the effect of the flattening compo-
nent on the initial layer.

4. Application to the analysis of natural folds

When the curves that describe the d vs. a variation are available
for a natural fold, the graphs obtained in the previous section can be
used to gain some insight into the folding mechanisms involved in
the development of the fold. On the other hand, ‘FoldModeler’ can be
used in this case to find by a trial-and-error method a particular
combination of mechanisms that gives the best fit to all the
geometrical features of the natural fold. Two natural examples have
been selected to explore the potentials of this method. The first of
them corresponds to a slightly asymmetric anticline developed in
a unit of Cambrian sandstone and shale of the Westasturian-Leonese
zone near Cudillero (Asturias, Spain). The sandstone layers A and B
pictured in Fig. 9a show a folded pattern of cross bedding that has
been sketched in black in Fig. 9b. Points in the graphics of Fig. 9c and
d indicate the variation of the obliquity angle d along the folded layer
for the top of layers A and B respectively. Note that as ‘FoldModeler’
only models synforms and has a particular convention to measure
angles (shown in Fig. 9b), the left part of the layer is represented in
the right part of the diagram and vice versa. A good fit to the
geometrical features of these folds can be been obtained with the
following modelling parameters: Layer A: Guideline eccentricity¼ 0
(circular arc) and a superposition of a first folding increment of
tangential longitudinal strain without area change (Dh¼ 0.28
measured in the right limb) and a second event of flexural flow
(Dh¼ 0.56 measured in the right limb). The d–a curve for this fold is
represented in green in Fig. 9c, in which curves for pure tangential
longitudinal strain with area change and flexural flow are also dis-
played to allow comparison. Good fits can be also obtained if the
application order of the two mechanisms is reversed, but the relative
intensity of the flexural flow episode must be increased. Tangential
longitudinal strain preceding flexural flow is suggested by the
analysis of other folds in the area (Toimil and Fernández, 2007).
Layer B: Guideline eccentricity¼ 0.6 (ellipse arc) and a single folding
episode of flexural flow (h¼ 1 in the right limb). The initial obliquity
angle (d0) is 160� for the two layers, though a better fit for the left-
most part of layer B (rightmost part of the diagram of Fig. 9d) is
obtained with d0¼154�. The ‘FoldModeler’ output with the
deformed grids of quadrilaterals (green) and the deformed traces
(red) is shown in Fig. 9b superposed on the sketch of the natural fold.

The analysis of folded oblique surfaces using ‘FoldModeler’ has
been also applied to a minor fold developed in a psammite layer
near Rhoscolyn Head (Holy Island, North Wales) during a second
deformation event that modified and distorted a previous hecto-
metric anticline and gave rise to minor folds and crenulation
cleavage S2 (Cosgrove, 1980; Lisle, 1988; Treagus et al., 2002).
Oblique surfaces analysed in this case are S1 surfaces folded into
a minor D2 synform. Fig. 10a shows the studied fold with a super-
posed sketch of bedding (blue lines), folded S1 surfaces (red lines)
and the reference frame used for the measure of angles. Fig. 10b and
d allows comparison between the obliquity angles measured on the
photograph (points) and those obtained for the theoretical fold
shown on Fig. 10c (green lines). The theoretical fold was obtained
with ‘FoldModeler’, applying to a horizontal layer a folding
sequence with guideline eccentricity¼ 1.2 (hyperbola arc) and



Fig. 9. (a) Anticline developed in Cambrian sandstone and shale of the Westasturian-Leonese zone near Cudillero (Asturias, Spain) showing a folded pattern of cross bedding.
(b) Sketch of the natural folded oblique surfaces (in black) with the theoretical fold obtained with ‘FoldModeler’ superposed (layer boundaries and grid in green and oblique surfaces
in red); the sign convention is shown. (c) and (d) Variation of the obliquity angle d along the folded layer for the top of layers A and B respectively. Points correspond to natural data;
the green curve is the best fit obtained for layer A (RMSE parameter k¼ 5.9); red curves correspond to a mechanism of pure tangential longitudinal strain without area change
(k¼ 7.05 for layer A and 7.3 for layer B); blue curves correspond to a pure flexural flow mechanism (k¼ 6.54 for layer A and 4.36 for layer B with d0¼160� , the curve corresponding
to d0¼ 154� has been constructed to fit the points with a between 60 and 80�).
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involving three folding steps: i) Tangential longitudinal strain
without area change (Dh¼ 0.2), ii) Flexural flow (Dh¼ 0.3), and iii)
Homogeneous flattening perpendicular to the axial plane withffiffiffiffiffiffiffiffiffiffiffiffi

l1=l2
p

¼ 3:24: The initial obliquity angle (d0) was 30�. Curves
corresponding to pure tangential longitudinal strain plus homo-
geneous flattening and pure flexural flow plus homogeneous flat-
tening are also shown in Fig. 10b and d to allow comparison. The
different attitude of the natural and the theoretical fold (Fig. 10a
and c) is probably due to the formation of the former in a second
deformation event on a layer dipping as a result of the first defor-
mation, whereas the theoretical fold was modelled from a hori-
zontal layer. The fit obtained suggests that the deformation
sequence of the theoretical fold can be considered as a first
approach to the one which operated in the natural fold, though
some mechanisms that cannot be introduced in the ‘FoldModeler’
analysis cannot be discarded. This is the case of a possible role of
active folding during the last stage that gave rise to the synform
drawn by S1 in the left limb of the fold analysed. The thinning of the
layer towards the left can be interpreted as a feature previous to
folding that can be tentatively attributed to pinch and swell
structures developed in the limb of a D1 fold due to flattening
associated with this deformation phase. ‘FoldModeler’ cannot
produce folds from a layer with variable thickness and hence the
precise form of the folded layer could not be reproduced in the
model. Theoretical folds that reproduce the thinning observed in
the psammite layer and give a reasonably good fit to the d variation
throughout the fold can be obtained applying simple shear defor-
mation to the model, but they do not agree with the deformation
sequence of the area nor with the geometries of other folds
observed in the outcrop (Lisle, 1988; Treagus et al., 2002).

5. Conclusions

Analysis of folded oblique surfaces can provide an interesting
contribution to the discrimination of kinematic mechanisms that
operated during folding. The program ‘FoldModeler’ allows
modelling oblique surfaces folded by any successive or simulta-
neous superposition of the main kinematic folding mechanisms
and facilitates a general method to make this analysis on the fold
profiles. The graphical representation of the obliquity angle d as
a function of the inclination a (d–a curve) is the tool used to carry
out the discrimination. ‘FoldModeler’ allows obtaining a lot of d–
a curves in a short interval of time.

The discrimination between the two basic mechanisms of
buckling (flexural flow and tangential longitudinal) is simple when
superposed homogeneous strain did not operate. The d–a curves of
folds formed by flexural flow are monotonously decreasing and,
when the initial obliquity angle d0 is the same for the top and bottom
of the layer, the d–a curve is also the same for the two layer
boundaries. On the other hand, the d–a curves of folds formed by



Fig. 10. (a) Minor fold developed in a psammite layer near Rhoscolyn Head (Holy Island, North Wales) with a superposed sketch of bedding (blue lines), folded S1 surfaces (red lines)
and the reference frame used for the measure of angles. (b) and (d) Variation of the obliquity angle d along the folded layer for the inner arc and the outer arc respectively; points
correspond to natural data; green curves correspond to the theoretical best fit obtained (k¼ 7.33 for the inner arc and 9.54 for the outer arc); blue curves correspond to pure flexural
flow plus flattening (k¼ 9.12 for the inner arc and 18.79 for the outer arc); red curves correspond to the pure tangential longitudinal strain without area change plus flattening
(k¼ 13.57 for the inner arc and 12.67 for the outer arc). (c) Theoretical fold obtained with ‘FoldModeler’ to fit the natural fold.
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tangential longitudinal strain are in general symmetrical with
a turning point at the hinge point (a¼ 0). These curves are different
for the two layer boundaries and the turning point is a maximum in
the inner arc and a minimum on the outer arc. An exception appears
for equiareal tangential longitudinal strain, in which the maximum
of the curve can appear slightly outside the point with a¼ 0 and the
curve can be somewhat asymmetric when the thickness/length ratio
of the initial layer or the aspect ratio of the fold is high.

The superposition of a flattening or a homogeneous simple
shear parallel to the axial trace on folds previously formed by
flexural flow or tangential longitudinal strain gives rise to changes
in the form of the d–a curves. If low homogeneous strain is involved
in the superposition, these curves can allow the discrimination of
the kinematic mechanisms involved in the folding by inspection
about the existence of a maximum point and its location when it
exists. When high homogeneous strain is superposed on previous
folds, a convergence in the form of the curves is produced, so that
these present a prominent maximum point in the high inclination
part of a limb. In these cases, the discrimination of the kinematic
mechanisms involved in the folding is difficult. An exception is the
case of flexural flow plus homogeneous simple shear with a shear
direction opposite to the initial dip of the oblique surfaces. In this
case, a maximum point only appears for very high levels of strain
and near to an end of the curve.

The d–a curves corresponding to folds formed by heterogeneous
simple shear are comparable to those for folds modified by flat-
tening or homogeneous simple shear, although the initial obliquity
angles are very different for these curves. When shear folds are
flattened, their curves are very difficult to distinguish from those
corresponding to other types of flattened or sheared folds.

When shear folds are combined with an irrotational homoge-
neous strain with the maximum elongation direction perpendicular
to the original layer, the order of application of the kinematic
mechanisms influences the geometry of the folded layer but not the
form of the d–a curve.

The use of standard sets of curves corresponding to different
types of strain patterns can be a valuable method to obtain a first
indication about the kinematic mechanisms that operated in
a specific natural fold, mainly when other geological information
about the structure is available. However, the search for a specific
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d–a curve that precisely fits the points (a, d) measured from the
natural fold can provide a more exact determination of the mech-
anisms involved. This can be made by trial-and-error using the
program ‘FoldModeler’.

Acknowledgements

The present work was supported by Spanish CGL-2006-06401-
BTE project funded by Ministerio de Educación y Ciencia and Fondo
Europeo de Desarrollo Regional (FEDER). We are grateful to P.J.
Hudleston and R.J. Twiss for many valuable suggestions that
notably improved the manuscript.

Appendix A. Commutativity of the superposition of
heterogeneous simple shear and flattening for the functional
relation between d and a

Let h be the deformation gradient, U and u the vectors indicating
the layer inclination before and after folding, and V and v the
vectors indicating the trace direction of the oblique surface before
and after the folding (Fig. A1). We have that

u ¼ hU; v ¼ hV (A1)

The angles searched are determined by the following geomet-
rical relationships:

cos d ¼ u,v
jujjvj; tan a ¼ u,bj

u,bi; (A2)

where bi and bj are the unit vectors of the orthonormal basis
e ¼ ðbi;bjÞ (Fig. A1).

Specifically, we will determine these angles in two cases: 1)
heterogeneous simple shear plus flattening, and 2) flattening plus
heterogeneous simple shear. In the two cases the matrices of the
objects will be referred to the basis e. These matrices will be named
by a subscript e; for example, he and ve are the matrices of h and v in
that basis.

Case 1 heterogeneous simple shear plus flattening
The equations of the total transformation are:

x ¼ AX
y ¼ Baf ðX=aÞ þ BY

�
; (A3)

where f(X/a) is the equation of the conic that represents the
guideline and a the scale factor of this curve. We obtain directly the
following matrices:

hð1Þe ¼
�

A 0
Bf 0ðX=aÞ B

�
; Ue ¼

�
1
0

�
; Ve ¼

�
cos d0
sin d0

�
; (A4)

where f 0ðX=aÞ is the derivative of f at the value X/a. Then, the vector
uð1Þe is given by:
Fig. 1A. Vectors used to define the directions of the layer boundary and the oblique
surface in the initial (a) and the final (b) configurations. bi and bj are the unit vectors of
the reference orthonormal basis.
uð1Þe ¼ hð1Þe Ue ¼
A

Bf 0ðX=aÞ ; and tan að1Þ ¼ B
A

f 0ðX=aÞ:

� �

(A5)

With this equation for tan a(1) we can write hð1Þe and uð1Þe in the
following form:

hð1Þe ¼
�

A 0
A tan að1Þ B

�
uð1Þe ¼

�
A

A tan að1Þ

�
(A6)

The vector vð1Þe is calculated using the hð1Þe value given in (A6)and
the Ve value given in (A3), i.e.,

vð1Þe ¼ hð1Þe Ve ¼
�

A cos d0
A tan að1Þcos d0 þ B sin d0

�
(A7)

Case 2 flattening plus heterogeneous simple shear
In this case, the equations of the total transformation are:

x ¼ AX
y ¼ Aaf ðX=aÞ þ BY

�
: (A8)

Comparing equations (A8) with those (A3) we observe that both
are different and then, the folds formed in the cases 1) and 2) may
be different.

The matrix of the deformation gradient is

hð2Þe ¼
�

A 0
Af 0ðX=aÞ B

�
; (A9)

and therefore,

uð2Þe ¼ hð2Þe Ue ¼
�

A
Af 0ðX=aÞ

�
; and tan að2Þ ¼ f 0ðX=aÞ:

(A10)

Introducing this value of tan a(2) in the previous matrix hð2Þe , we
have:

hð2Þe ¼
�

A 0
A tan að2Þ B

�
and uð2Þe ¼

�
A

A tan að2Þ

�
; (A11)

and finally

vð2Þe ¼ hð2Þe Ve ¼
�

A cos d0
A tan að2Þcos d0 þ B sin d0

�
: (A12)

As we can see in (A2), the calculation of d is made in terms of u
and v. On the other hand, the form of the matrices uð1Þe and vð1Þe in
terms of tan a(1) [eq. (A6 and A7)] is the same than those of uð2Þe and
vð2Þe in terms of tan a(2) [eq (A11) and (A12)]. Hence, although the
folded layers are different in the two cases, the relations between
d and a are identical.
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